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1. The biharmonic equation in Cartesian coordinates aAAW = O allows
particular solutions of the form

-Brx
We=e " Fy (1.1)
applicable to problems on equilibrium of thin plates. In the case of bending,

W 1is the deflection; for a plane problem, W 1s the stress function.
The functions p,(y) satisfy the differential equation

FkIV -+ 2Bk2Fk”+ Bk4F1¢ = (1.2)

and the parameters g, are determined from the boundary conditlons of the
problem. For example, when conditions

Fr(=D =0, F/ (+1)=0 (1.3)

are satisfied, which corresponds to the absence of stresses along the bounda-
ries 3 = +1 1in the plane problem of the theory of elastlcity, or to built-
ir supports of these edges in the bending problem, the parameters g, will
be the 1oots of the transcendental equatlion sinpg cos g +8 =0 .

For this case, the Qollowing result 1s cue to Papkovich {1 and 2]; he
found the relation of "generalized orthogonality"

1
S (F'F — B33 FFgdy =0 (k=9 (1.4)
1

which is satisfied by functions F,(y), when conditions (1.3} are present.

However, relation (1.4) exists not only when conditlons (1.3) are satis-
fied. To prove this, we will reproduce the derivation of Equation (1.4}
without using the requirements (1.3). Multiplying Equation (1.2) for number
¥k by g2r,(y), and that for number s by B82r, {(y), subtracting and inte-
grating from —1to +1, we get
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Relation of the generallzed orthogonality of P.F.Papkovich

1 1 1
Bs? S Fy'VF dy — By S Fypf Ny + 2Bk23s2§ (Fy"Fg— FyF ") dy +
-1 -1 -1

1
+ By™Bs" (3 — B S FyFsdy =0
-1
Integration by parts of the first three integrals results in Expressicn

1
B =B \ (FF — 82820, F ) dy + (1.5)
-1

9 AN — " (AN 2 " " ’ ny=+1 __
A+ (B2 (Fy"Fy— FY'F ) — B3 (FyF " — FYF ")+ 28,238 (F F — F R O)Y=tt =0
It 1s obvious, that when conditions (1.3) are satisfied, Equation (1.4)
follows immediately from Expression (1.5). Consider now the case of the
free edges of a plate under flexure; here we have

FW, W, PW, PW,
7!;;—- 'V—aa-:z——oa ays +(2—v)6x’6y =0 for y::f_'i
or, from Equation (1.1},
F," (£ 1) + v;3k2Fk(i 1) =0, Fk'" (1) 4+ 2 —w) ﬁksz, (1) =0 (1.6)

The substitution of Equations (1.6) into Expression (1.5) again leads to
the relation (1.4).

For a thin plate, subjected to the conditions of a plane pioblem, with
Airy's function expressible by Eguation (1.1), we have the displacements

-8 Fo7 By Fom -
= [kaFk 0 — "B‘y)J, Fop——¢ * [(2+v> Fy )+ k—s@J
k i

Therefore, with the clamping of sides y =+ 1 of such a plate, we have
conditions

Frpm (£ 1) — VB2 F, (£ 1) =0, F (2D QAVBIF (H)=0 (1.7

Conditions (1.7) differ from (1.6) only in the sign of Poisson's ratioc;
relationship (1.4) will be also satisfied by conditions (1.7). It is also
clear, that with the presence along the boundaries y = +land y = -1 of
different conditions, belonging to one of the discussed cases (conditions
21.3§ or (1.6) or (1.7)} *, the relation of the generalized orthogonallty

1.4) will also take place. It must only be emphasized that the tirancen-
dental equation ** which determines the proper numbers 8, , as well as the
form of the actual functlons F,(y) , depend essentially on the boundary
conditions at y = £1 .

Grinberg [ 3] showed that Papkovich's relation can be expressed in differ-
ent forms, for example

1 1
0 S FUFldy — (3,2 +B.Y) S F Fdy =0 (k= s) (1.8)
% Y

*  Or conditions F, (4 1) = F," (£ 1) = 0, which correspond to a supported
edge of the plate.

** The transcendental equation for the proper numbers g, and the forms
of the proper functions Fk(y) ,» for varlous boundary conditions of a
rectangular plate can be found in the article by Kitover [4]. See also
the book by Ufliand [5] which gives the values of the first numbers By -



430

V.K. Prokopov

It is easy to check, that the relationship (1.8) will also take place in
the above mentioned cases.

2. Relatlon (1.4) was used by Papkovich to satisfy the boundary conditions
in the problem of plate bending with rigidly built-in edges y = +1 [2].
For any boundary conditions at x = O , the problem of determining the coef-
ficlents g, 1in the homogeneous solution

W= e, = N age FF, ) 2.1)
k k

by the method of Papkovich, reduces to some integral equation [2 and 3].
However, for the case of a supported edge x = O , or an edge with a roller,
it was shown by Papkovich, that relation (1.4) enables us to obtain a gene-
ral formula for the separate determination of the coefflclents a, . Since
the homogenecus solution 1s added to the particular integral, corresponding
to the loading (and the boundary conditions at y =*1 ), at & supported
edge x = 0 we can consider as given the deflection and bending moment

’w Iw
el +v 0

W 'x=0 = (Pl (y)v y

= @y (y)
x=0
Substituting ¥ from (2.1), we get
E a,Fy (y) = 9y (), 2 ay [B2F (y) + vF," W] =@, () (2.2
[ k

Eliminating #/(y) from the second equation (2.2), by means of the filrst
equation, we get a simpler system of equations

DaFr®) =0 @) =hH©, DaBF @) = @@ — Ve ) = L) (2.3)
k k

Papkovich gives the following sclution to the problem of determlning the
coefficlents @, from conditions (2.3), we form the difference

Fr W " @) — BAF ) fo () = ; ay (FJSF," — BB2F Fy)

integrating this from —1 to +1 and using (1.4), we get

+1
a, =\ O 0 — B W) ) ay (2.4)
where —11
1= Fy e =30 1R dy 2.5)

-1

With a roller support of edge x = 0 , the angle of rotation and the sup-
port reaction are given by

aw _ PW 9 _ 3PwW —
B lx—=0 ¢ (¥, oz T v) dxdy? ix=0 @ @)

The substitution into these conditions of the series (2.1) leads to
equations

— D 4B P ) = o (), - Ek'akBk [B2Fp )+ 2 —v) F" )] = @2 (v) (2.6)
E -

It 1s easy to see that by substituting the coefficients — q,8, = b, and
by introducing functions

AW =0, LW=0G)—R—Ma"®
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Equations (2.6) are brought to a form, identical to the system (2.3)
MbpFr (W) = fr (), S b, Bi2Fy (y) = fo ()
% P

In the case of a plane problem for a rectangular strip, the following
combinations can be solved. One, in which at the edge x = O we are glven
the normal displacement y and the tangential stress «r,, , and the other,
when we are given the normal stress o, and the tangentiai displacement v .
For the flyst case we have the conditlons

2.7)
Fy' <u>} oW :
= VB, F — F Y = , e = 2,8 F, (y) = @2 (y)
Eul_, %ak{ By () B P () 5239 =0 g SR R p)
Let us assume, that at least one of the longitudinal edges of the stiip
is free from stiess; let it be the side y = —1, then F (-1) = 0 . We
wlll introduce the functions
v
hD=vh@—n6 RO =\ %6 d 2.8

and the coefficients -t

by = ay /By

Integrating the second condition (2.7) from -1 to y , and performing
some simple transformations we get the system

S, Fy ) = i @), S 0Bt ) = fo ) (2.9)
k

which is even simpler than the system (2.3). Using the relation of "gener-
alized orthogonality" (1.%), we obtain from (2.9) the followlng equation for
the coefficients

(Fy" W) fL ) — B2F, (v) o (W)} dy (2.10)

[

1
b =—
k

Iy

t

1

If both the longitudinal edges y = z1 are rigidly built-in, then the
transformation of the system (2.7) will be somewhat more complicated. Let
us differentiate twice the first equation (2.7), using the differential
equation (1.2) we get

o) = Z,;'ak{Q + V) B Py @) + BiFy W) @2.11)

Let us now introduce the functilons
P W) — 2 +ve (y) = f @, ¢ ) = f1 (W) (2.12)

and the coefficients

by = @iy
for which we again get the system (2.9). We could have introduced the
functions (2.12) also in the preceeding case, however their introduction

requires an additlonal condition of the existence of the derivatives (g,
®2) on the right-hand side of conditions (2.7).

When, at the edge x = O , we are given the noirmal stress and the tan-
gentlal displacement, we have the conditions

‘9;;’: = Yo ) = 0 )
* (2.13)

F Ld
Evlyg=— ak{(?. LV F W) -%;zﬁy—)} = ¢ @)
k

and

x=0
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Differentiating the second condition (2.13) and using the differential
equation (1.2), we get

%}“k BRF e ) — vF () = 4 () (2.14)
and after further introducing the functions
H @) = ¢ @), fa ) =@ (1) -+ v, (v {2.15)
we get equations, identical with the system (2.9)
M apFy @) = f, @), S aB2F ) = f, @) (2.16)
E k

Thus, it 1s possible to generalize the method of Papkovich to all the
cases, when relation (1.4) 1s satisfied, which, as was shown in Section 1,
is not necessarily connected with the conditions Fk(j:i):: Fk’(jzﬂ):: Q.

3. In the solutlon of the plane problem of the theory of elasticity for
a semi-infinite strip ¢ > 0, the edges ¥ = +1 of which are free from ex-
ternal forces, the question arises, as to what are the conditions to be
satisfled by the functions o, (y) and g,(y)} , which characterize the dis-
placements along the edge x = O, in order that the stresses (and displace-
ments) should die away with distance from the edge. If, along the edge of
the strip, we are given the stresses

1

Oy }x:::{) = @y {y), Txy la=n — T2 ® (GRY

then, according to Saint-Venant's principle, the necessary condition for
damping 1s that the .esultant vector and moment of the forces (2.1) applied
to the edge x = 0 , should be equal to zero, 1.e.

1 1 1
fawa=0 (aww-0 (ewaw-o (1.2
] el he}

In other cases, the question needs a special investigation. In the case
when either the normal displacement y and the tangentlial stress 1, (2.7,
or the tangential displacement v and the normal stress g, (2.13) aregiven,
such conditlons are easlly established. Since in the above mentioned cases
the actual solution of the problem 1s determined by the systems (2.9) and
(2.16) which are identical, then the conditions imposed on the functions
£, {y) and r,{y; will be the same in both cases.

Let us investigate the problem (2.7). One of the conditions can be writ-
ten immediately: 1t 1is the same as the last of conditions (3.2), since the
function o (y represents the edge value of the tangentlal stress 1,

In problem 12.13), the function # (y) will be the given stress g, at
x = 0 , therefore alsc in problem 12.7) we must satisfy conditions
1 1
\ Folpdy =20, 5 A{ydy =1 (3.0,

B

2t -1
However, in problem {2.7) the function g, {y) is determined by Equations
(2.8), therefore in place of (3.3) we will have

1 { L I 1

1“ ' i
VK dyg G () d — th W) dy = 0. v§ vy \ g O dn— \ gy () du - O
il :1 :l :‘ 11 ‘71

Changing the order of integration and using the last of conditions {3.2),
we get the final expression of the additlonal conditions

1 1 .
(\' (g () 4 vua, (W} dy = 0, \ {zm () - \ u'-'wm}{!:« = A
. :1 -

-1
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‘Tne last of conditions (3.2) and conditions (3.4) must be applied to the
functions ¢, (y) and ¢2(y? in the edge problem (2.7) for the seml-infinite
strip, along the sides y = +1 which have no stresses. By analogous con-
siderations we reach the conditions

1 1
S% (y) dy = 0, S W ydy =0, ¢ 1)+ vp (1) =g (—1) +ve, (—1)  (3.5)
-1 -1

which take place in the edge problem (2.13) for the semi-infinite strip with
stress-free edges y =+ 1
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